Math Circles - Elementary Number Theory - Fall 2023

Exercises

GCD

1. Prove the following statements:
(a) Prove that if $a \mid b$, then $a \mid x b$ for all integers x.
(b) Prove that if $a \mid b$ and $a \mid c$, then $a \mid b \pm c$.
(c) Prove that if $a \mid b$ and $a \mid c$, then $a \mid x b \pm c y$ for all integers x and y.
(d) Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
2. Show that if $k \mid m n$ but $k \nmid m$, then $k \mid n$.
3. Compute the following using the Euclidean Algorithm:
(a) $\operatorname{gcd}(18,24)$
(b) $\operatorname{gcd}(78,320)$
(c) $\operatorname{gcd}(191,443)$
4. Let $d=\operatorname{gcd}(a, b)$. Prove that if $c \mid a$ and $c \mid b$, then $c \mid d$.
5. Let d be a common factor of a and b such that all common factors of a and b divide d. Prove that $d=\operatorname{gcd}(a, b)$.

Prime Numbers

1. Write the prime factorizations of the following numbers:
(a) 2310
(b) 2048
(c) 2039
2. Prove that there are infinitely many primes.
3. Suppose a and b are relatively prime. Prove that there exist integers x and y such that $a x+b y=1$.
4. Compute the following:

- $\Phi(27)$
- $\Phi(37)$
- $\Phi(210)$

5. Prove that, for all n, we have that $\sum_{d \mid n} \Phi(n)=n$.
