Math Circles - Elementary Number Theory - Fall 2023

Exercises

GCD

- 1. Prove the following statements:
 - (a) Prove that if $a \mid b$, then $a \mid xb$ for all integers x.
 - (b) Prove that if $a \mid b$ and $a \mid c$, then $a \mid b \pm c$.
 - (c) Prove that if $a \mid b$ and $a \mid c$, then $a \mid xb \pm cy$ for all integers x and y.
 - (d) Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
- 2. Show that if $k \mid mn$ but $k \nmid m$, then $k \mid n$.
- 3. Compute the following using the Euclidean Algorithm:
 - (a) gcd(18, 24)
 - (b) gcd(78, 320)
 - (c) gcd(191, 443)
- 4. Let d = gcd(a, b). Prove that if $c \mid a$ and $c \mid b$, then $c \mid d$.
- 5. Let d be a common factor of a and b such that all common factors of a and b divide d. Prove that $d = \gcd(a, b)$.

Prime Numbers

- 1. Write the prime factorizations of the following numbers:
 - (a) 2310
 - (b) 2048
 - (c) 2039
- 2. Prove that there are infinitely many primes.
- 3. Suppose a and b are relatively prime. Prove that there exist integers x and y such that ax + by = 1.
- 4. Compute the following:
 - $\Phi(27)$
 - $\Phi(37)$
 - Φ(210)
- 5. Prove that, for all n, we have that $\sum_{d|n} \Phi(n) = n$.